Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)

نویسندگان

  • Bertrand Lasseur
  • Jérémy Lothier
  • Andres Wiemken
  • André Van Laere
  • Annette Morvan-Bertrand
  • Wim Van den Ende
  • Marie-Pascale Prud'homme
چکیده

The main storage compounds in Lolium perenne are fructans with prevailing β(2-6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and functional characterization of a cDNA encoding fructan:fructan 6G-fructosyltransferase (6G-FFT)/fructan:fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.).

Fructans are the main storage compound in Lolium perenne. To account for the prevailing neokestose-based fructan synthesis in this species, a cDNA library of L. perenne was screened by using the onion (Allium cepa) fructan:fructan 6G-fructosyltransferase (6G-FFT) as a probe. A full length Lp6G-FFT clone was isolated with significant homologies to vacuolar type fructosyltransferases and invertas...

متن کامل

Re-Programming Photosynthetic Cells of Perennial Ryegrass (Lolium perenne L) for Fructan Biosynthesis through Transgenic Expression of Fructan Biosynthetic Genes under the Control of Photosynthetic Promoters

High molecular weight fructans are the main class of water-soluble carbohydrate used for energy storage in many temperate grass species including perennial ryegrass (Lolium perenne L.). As well as being important readily mobilisable energy reserves for the plant, fructans are also involved in stress tolerance. Fructans are also readily digested by grazing ruminants and hence are a valuable sour...

متن کامل

Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization.

Fructans, which are beta-(2,1) and/or beta-(2,6) linked polymers of fructose, are important storage carbohydrates in many plants. They are mobilized via fructan exohydrolases (FEHs). The cloning, mapping, and functional analysis of the first 1-FEH (EC 3.2.1.153) from Lolium perenne L. var. Bravo is described here. By screening a perennial ryegrass cDNA library, a 1-FEH cDNA named Lp1-FEHa was c...

متن کامل

Molecular characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) of the cold-resistant Patagonian grass Bromus pictus associated with fructan accumulation under low temperatures.

Fructans are fructose polymers synthesized from sucrose in the plant vacuole. They represent short- and long-term carbohydrate reserves and have been associated with abiotic stress tolerance in graminean species. We report the isolation and characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) gene from a Patagonian grass species, Bromus pictus, tolerant to drought and c...

متن کامل

Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase.

Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2011